Sacrificial etching of AlxGa1−xAs for III–V MEMS surface micromachining

نویسندگان

  • p. kumar
  • s. kanakaraju
  • d. l. devoe
چکیده

A study of AlxGa1−xAs as a sacrificial film for surface micromachining is presented. AlxGa1−xAs etch rate and selectivity are measured over a range of aluminum mole fractions and HF etchant concentrations during the release of structural features up to 500 μm in width. The etch process is found to be diffusion limited, with an inverse power law relationship between etch depth and etch rate. Excellent selectivity greater than 105 is achieved between sacrificial AlAs and structural GaAs, even for long etches up to 250 μm in length. Compared with previous studies of AlxGa1−xAs etching for epitaxial liftoff processing, measured etch rates for surface micromachining are approximately an order of magnitude lower, primarily due to the longer effective etch lengths required. However, unlike epitaxial liftoff, AlxGa1−xAs surface micromachining is compatible with higher HF concentrations which can provide comparable overall etch rates, with important implications for AlGaAs MEMS fabrication. PACS 81.05.Ea; 85.85.+j

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Micromachining for Microelectromechanical Systems

Surface micromachining is characterized by the fabrication of micromechanical structures from deposited thin films. Originally employed for integrated circuits, films composed of materials such as low-pressure chemical-vapor-deposition polycrystalline silicon, silicon nitride, and silicon dioxides can be sequentially deposited and selectively removed to build or “machine” three-dimensional stru...

متن کامل

Fabrication of SiC MEMS Pressure Sensor Based on Novel Vacuum-Sealed Method

The fabrication of SiC MEMS pressure sensor based on novel vacuum-sealed method is presented in this paper. The sensor was fabricated using surface micromachining. Due to its excellent mechanical properties and high chemical resistance, PECVD (Plasma Enhanced Chemical Vapor Deposition) SiC was chosen as structural material. Polyimide is the sacrificial layer which solve stiction problem in proc...

متن کامل

Micromachining of mesoporous oxide films for microelectromechanical system structures

The high porosity and uniform pore size of mesoporous oxide films offer unique opportunities for microelectromechanical system (MEMS) devices that require low density and low thermal conductivity. This paper provides the first report in which mesoporous films were adapted for MEMS applications. Mesoporous SiO2 and Al2O3 films were prepared by spin coating using block copolymers as the structure...

متن کامل

Silicon Sacrificial Layer Dry Etching (SSLDE) for free-standing

A novel Silicon Sacrificial Layer Dry Etching (SSLDE) technique using sputtered amorphous or LPCVD polycrystalline silicon as sacrificial layers and a dry fluorine-based (SF6) plasma chemistry as releasing process is reported with a detailed experimental study of the release etching step. The process is capable of various applications in surface micromachining process, and can be applied in fab...

متن کامل

Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes

This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodepos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007